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Abstract 

 

We created a new experimental apparatus (the SCF
2
) and a new test procedure (the SCF-

Test) to characterize and model the detailed thermal behavior and the optical performance of 

laser retroreflectors in space for industrial and scientific applications. One of the primary 

goals of this innovative tool is to provide critical capabilities in a timely fashion for the 

advent of the European GNSS, GALILEO: (i) validation of the functionality of GNSS laser 

retroreflector payloads; (ii) optimization of their design in order to maximize the efficiency of 

satellite laser ranging (SLR) observations by the International Laser Ranging Service (ILRS). 

This will allow for a significant improvement of the positioning of GNSS satellites, both in 

terms of absolute accuracy and of long-term stability. Thanks to its superior H-maser clocks 

and SCF-Tested retro-reflectors GALILEO will also provide a large improvement in the 

measurement of the gravitational redshift. The SCF-Test was developed in the context of the 

ETRUSCO [1] experiment of INFN (approved in Summer 2006) at INFN-LNF, Frascati 

(Italy), a large-scale infrastructure of the European Research ―Framework Programme‖ 

(FP). This research has been funded by INFN and carried out at two dedicated LNF 

facilities, in collaboration with Italian and American partners. Since a comprehensive and 

non-invasive space characterization like the SCF-Test has never been performed before, the 

results reported in this paper are important to understand the SLR performance on current 

and future GNSS, as well as the fundamental physics reach of 2
nd

 generation lunar laser 

ranging (LLR). We identified the SCF-Test as a missing industry standard for space 

applications and as a missing critical service/functionality for GALILEO. We proposed its 

adoption as a tool for the simulation and testing of GALILEO SLR and of 2
nd

 generation LLR 

for the ―International Lunar Network‖ (ILN) and for NASA‘s manned landings. 

 

 

SCF-Test of the “GPS3” Laser Retroreflector Array Flight Model 

 

The full description of ETRUSCO, the SCF, the SCF-Test and the test results obtained on 

cube corner retroreflector (CCR) prototypes of GLONASS/GIOVE and of LAGEOS can be 

found in [1]. Here we report the results of the SCF-Test of the 3
rd

 and last existing laser 

retroreflector array (LRA) flight model built in Russia for the GPS-2 GNSS constellation. We 

call this LRA the ―GPS3‖. The GPS3, now loaned to LNF, is property of UMD. 

                                                
1
 Presented by S. Dell‘Agnello at the 16

th
 ILRS Workshop, Poznan, Poland, October 13-17, 2008. 

2
 Satellite/lunar laser ranging Characterization Facility, Frascati (Rome), Italy. 
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The New Industry-Standard Space Test of Laser Retroreflectors: the “SCF-Test” 

 

The SCF-Test consists of the integrated thermal 

and optical measurements described below 

performed on LRA breadboards, prototypes or 

payloads. The SCF-Test is innovative. Its 

comprehensive and non-invasive set of 

measurements was never performed before. For 

example, it was not done on LAGEOS I and 

LAGEOS II. It was also never done for GNSS. 

The SCF-Test concept for an orbital 

configuration corresponding to the sunlit to 

earth shadow transition is shown in Fig. 1. 

 

The new test that we developed and validated 

with GNSS and LAGEOS CCRs consists of 

several measurements and software simulations, 

which include: 

Figure 1. SCF-Test conceptual drawing. 

 

 Hold the average temperature of the LRA mechanical support structure (Al for 

LAGEOS, GLONASS, GPS-2, GIOVE-A/B), TM, to the expected value, TAVG. TAVG 

has been estimated with thermal simulations for LAGEOS. TAVG is an input to the 

SCF-Test. Evaluate with SCF data and TRS models: 

1. CCR surface temperature and CCR. 

2. CCR far field diffraction patterns (FFDPs) in representative space conditions 

(see Fig. 2, left) and in air/isothermal conditions (Fig. 2, right). FFDPs are 

measured with the external optical circuit [1][2]. 

3. Surface temperature of non-CCR components of the LRA. 

4. Temperature difference between the CCR outer face and its corner inside the 

cavity. This evaluation is a combination of measurement plus modeling to 

assess the CCR optical functionality. 

5. Repeat the above for TM different from TAVG, in the appropriate range. 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. FFDP measurement of a Glonass CCR inside the SCF (left) and at STP (right). 
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 Repeat the above for different Sun illumination conditions: 

1. transition from SS turned off to on and vice versa (effect of Earth shadow) 

2. varying incidence angles of the Sun illumination 

3. different times along the thermal relaxation curve. 

 Tune the TRS models to the SCF data for ―static‖ climatic conditions, in which the 

Sun Simulator and Earth Simulator are turned on and off alternatively. 

 Use validated TRS and CODEV simulations to model the LRA behavior for generic 

orbit and spin configurations (ie, SPACE data). 

 

FFDP Test in Air/Isothermal Conditions of the GPS3 at 632 nm 

 
We performed the FFDP test of each single CCR in air and isothermal conditions at 632 nm 

laser wavelength in the Optics Lab [2]. Figure 3 shows FFDPs of 4 CCRs mounted with 

different relative orientations. For 12 CCRs, like the bottom left of Fig. 3, the two peaks are 

almost blend into one. In the presence of thermal perturbations ―blended‖ peaks will separate 

into two peaks; this has been demonstrated by the GLONASS SCF-Test reported in [1]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. FFDPs of flight GPS3 retroreflectors in air, T = 22
o
C and 632 nm. 

 

 

Fig. 4 shows the distance between the two peaks of the 20 CCRs whose FFDP has two 

cleanly separated peaks. The CodeV prediction assumes the nominal 50 rad central value of 

the GPS velocity aberration and a uncertainty of 5 rad related to the inaccurate knowledge 

of the FFDP circuit. 
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Figure 4. FFDP of the GPS3 retroreflectors with two separate peaks. 

 

 
SCF-Test of the GPS3 at 532 nm 

 

We performed the SCF-Test of four CCRs at 532 nm laser wavelength. The measurement and 

analysis is described in detail in [1]. The GPS3 temperature was controlled with a custom 

copper plate (Fig. 5, left) in thermal contact with the array Al base plate (Fig. 5, center) via 

indium washers. The copper plate is in turn thermally controlled with a fluid driven by an 

external chiller. The temperature of the array Al back plate is measured via a PT100 probe 

(Fig. 5, center) and during the test it was set to (191)
o
C. The solar constant had a slightly 

reduced value of (0.920.02)AM0 due to technical reasons. 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. GPS3 in the SCF on the Cu thermal control plate and roto-translation system (left); 

GPS3 Al back with PT100s; (center); CCRs with staggered orientations (right). 

 

 

Here we present the FFDP variations vs. time for one CCR of the GPS3. The temperature 

variation of the front face of this CCR, its ―hot‖ and ―cold‖ FFDPs are shown in Fig. 6. The 

FFDP behavior vs. time is shown in Fig. 7. The oscillation of the FFDP peak heights shown 

in Fig. 7 (top) for times above 2000 sec is due to a few degree instability of the thermal 

control system. This technical issue has now been solved, but it shows that small LRA bulk 
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temperature changes directly influence the LRA optical performance. This is a 20% effect 

due to a few-degree change. 

 

 

 

 

 

 

 

 

Figure 6. Front face CCR temperature and CCR FFDP at the end heating (left). Front face 

CCR cool-down curve and its FFDP 3000 sec after the SS has been turned off. 

 
 

 

 
Figure 7. CCR cool-down: FFDP peak distance vs. time (top); maximum FFDP intensities at 

the average velocity aberration of ILRS stations vs. time (bottom). 

 

 

These data show that the optical performance is significantly degraded for this geometric and 

thermal configuration. The FFDP peaks are disrupted and the FFDP intensity is scattered all 

over the place. For the first 10-20 seconds it is hard to define peaks. The fast 

decrease/increase of the peak distance/height that is clearly visible for the SCF-Test of the 

GLONASS 2007 CCRs [1] is less clearly visible for these late ‗80s GPS-2 CCR. The 

degradation of the initial ―hot‖ FFDP is worse than for the GLONASS prototype, probably 
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because the GPS3 is an older and less optimized payload. However, the reduction in intensity 

between the hot and cold conditions is a factor about 7, exactly like for the SCF-Test of the 

more recent GLONASS CCR. 

 

Based on their nominal specifications (number of cubes, their size, Al-coating, etc) and 

assuming isothermal conditions, the GPS LRAs are known to provide a LIDAR optical cross 

section about a factor 5 lower than the 100 million m
2
 required by ILRS for GPS altitudes 

[3][4]. Thermal perturbations like those measured with our SCF-Test represent a dramatic 

degradation of this cross section, by a factor of about 7. 

SCF-Tests help predict the SLR signal strength of the GPS3 in orbit. This requires correcting 

the data for the residual instrumental effects, differences between the SCF and orbital 

configurations, computing the optical cross section and correcting that for the (distance)
-4

 

reduction. Since GALILEO is higher than GPS/GLONASS/Compass, greater care must be 

taken to make the return pattern uniform when the satellite moves across the sky and to avoid 

degradations due to on-board thermal effects. Our ultimate goals is provide data useful to 

optimize the LRA design and boost the signal strength to allow for daylight ranging by the 

majority of ILRS stations (unlike now). This in turn will allow SRL-only orbits to be 

computed more frequently than weekly. Week-average SLR-only orbits were computed 

during the important SLR tracking campaign of GIOVE-A in 2006 [5]. 
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